home *** CD-ROM | disk | FTP | other *** search
- # Source Generated with Decompyle++
- # File: in.pyc (Python 2.3)
-
- '''Random variable generators.
-
- integers
- --------
- uniform within range
-
- sequences
- ---------
- pick random element
- pick random sample
- generate random permutation
-
- distributions on the real line:
- ------------------------------
- uniform
- normal (Gaussian)
- lognormal
- negative exponential
- gamma
- beta
- pareto
- Weibull
-
- distributions on the circle (angles 0 to 2pi)
- ---------------------------------------------
- circular uniform
- von Mises
-
- General notes on the underlying Mersenne Twister core generator:
-
- * The period is 2**19937-1.
- * It is one of the most extensively tested generators in existence
- * Without a direct way to compute N steps forward, the
- semantics of jumpahead(n) are weakened to simply jump
- to another distant state and rely on the large period
- to avoid overlapping sequences.
- * The random() method is implemented in C, executes in
- a single Python step, and is, therefore, threadsafe.
-
- '''
- from math import log as _log, exp as _exp, pi as _pi, e as _e
- from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
- from math import floor as _floor
- __all__ = [
- 'Random',
- 'seed',
- 'random',
- 'uniform',
- 'randint',
- 'choice',
- 'sample',
- 'randrange',
- 'shuffle',
- 'normalvariate',
- 'lognormvariate',
- 'cunifvariate',
- 'expovariate',
- 'vonmisesvariate',
- 'gammavariate',
- 'stdgamma',
- 'gauss',
- 'betavariate',
- 'paretovariate',
- 'weibullvariate',
- 'getstate',
- 'setstate',
- 'jumpahead']
- NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
- TWOPI = 2.0 * _pi
- LOG4 = _log(4.0)
- SG_MAGICCONST = 1.0 + _log(4.5)
- import _random
-
- class Random(_random.Random):
- """Random number generator base class used by bound module functions.
-
- Used to instantiate instances of Random to get generators that don't
- share state. Especially useful for multi-threaded programs, creating
- a different instance of Random for each thread, and using the jumpahead()
- method to ensure that the generated sequences seen by each thread don't
- overlap.
-
- Class Random can also be subclassed if you want to use a different basic
- generator of your own devising: in that case, override the following
- methods: random(), seed(), getstate(), setstate() and jumpahead().
-
- """
- VERSION = 2
-
- def __init__(self, x = None):
- '''Initialize an instance.
-
- Optional argument x controls seeding, as for Random.seed().
- '''
- self.seed(x)
- self.gauss_next = None
-
-
- def seed(self, a = None):
- '''Initialize internal state from hashable object.
-
- None or no argument seeds from current time.
-
- If a is not None or an int or long, hash(a) is used instead.
- '''
- super(Random, self).seed(a)
- self.gauss_next = None
-
-
- def getstate(self):
- '''Return internal state; can be passed to setstate() later.'''
- return (self.VERSION, super(Random, self).getstate(), self.gauss_next)
-
-
- def setstate(self, state):
- '''Restore internal state from object returned by getstate().'''
- version = state[0]
- if version == 2:
- (version, internalstate, self.gauss_next) = state
- super(Random, self).setstate(internalstate)
- else:
- raise ValueError('state with version %s passed to Random.setstate() of version %s' % (version, self.VERSION))
-
-
- def __getstate__(self):
- return self.getstate()
-
-
- def __setstate__(self, state):
- self.setstate(state)
-
-
- def __reduce__(self):
- return (self.__class__, (), self.getstate())
-
-
- def randrange(self, start, stop = None, step = 1, int = int, default = None):
- """Choose a random item from range(start, stop[, step]).
-
- This fixes the problem with randint() which includes the
- endpoint; in Python this is usually not what you want.
- Do not supply the 'int' and 'default' arguments.
- """
- istart = int(start)
- if istart != start:
- raise ValueError, 'non-integer arg 1 for randrange()'
-
- if stop is default:
- if istart > 0:
- return int(self.random() * istart)
-
- raise ValueError, 'empty range for randrange()'
-
- istop = int(stop)
- if istop != stop:
- raise ValueError, 'non-integer stop for randrange()'
-
- if step == 1 and istart < istop:
- return int(istart + int(self.random() * (istop - istart)))
-
- if step == 1:
- raise ValueError, 'empty range for randrange()'
-
- istep = int(step)
- if istep != step:
- raise ValueError, 'non-integer step for randrange()'
-
- if istep > 0:
- n = ((istop - istart) + istep - 1) / istep
- elif istep < 0:
- n = ((istop - istart) + istep + 1) / istep
- else:
- raise ValueError, 'zero step for randrange()'
- if n <= 0:
- raise ValueError, 'empty range for randrange()'
-
- return istart + istep * int(self.random() * n)
-
-
- def randint(self, a, b):
- '''Return random integer in range [a, b], including both end points.
- '''
- return self.randrange(a, b + 1)
-
-
- def choice(self, seq):
- '''Choose a random element from a non-empty sequence.'''
- return seq[int(self.random() * len(seq))]
-
-
- def shuffle(self, x, random = None, int = int):
- '''x, random=random.random -> shuffle list x in place; return None.
-
- Optional arg random is a 0-argument function returning a random
- float in [0.0, 1.0); by default, the standard random.random.
-
- Note that for even rather small len(x), the total number of
- permutations of x is larger than the period of most random number
- generators; this implies that "most" permutations of a long
- sequence can never be generated.
- '''
- if random is None:
- random = self.random
-
- for i in xrange(len(x) - 1, 0, -1):
- j = int(random() * (i + 1))
- (x[i], x[j]) = (x[j], x[i])
-
-
-
- def sample(self, population, k):
- '''Chooses k unique random elements from a population sequence.
-
- Returns a new list containing elements from the population while
- leaving the original population unchanged. The resulting list is
- in selection order so that all sub-slices will also be valid random
- samples. This allows raffle winners (the sample) to be partitioned
- into grand prize and second place winners (the subslices).
-
- Members of the population need not be hashable or unique. If the
- population contains repeats, then each occurrence is a possible
- selection in the sample.
-
- To choose a sample in a range of integers, use xrange as an argument.
- This is especially fast and space efficient for sampling from a
- large population: sample(xrange(10000000), 60)
- '''
- n = len(population)
- if not None if k <= k else k <= n:
- raise ValueError, 'sample larger than population'
-
- random = self.random
- _int = int
- result = [
- None] * k
- if n < 6 * k:
- pool = list(population)
- for i in xrange(k):
- j = _int(random() * (n - i))
- result[i] = pool[j]
- pool[j] = pool[n - i - 1]
-
- else:
- selected = { }
- for i in xrange(k):
- j = _int(random() * n)
- while j in selected:
- j = _int(random() * n)
- result[i] = selected[j] = population[j]
-
- return result
-
-
- def uniform(self, a, b):
- '''Get a random number in the range [a, b).'''
- return a + (b - a) * self.random()
-
-
- def normalvariate(self, mu, sigma):
- '''Normal distribution.
-
- mu is the mean, and sigma is the standard deviation.
-
- '''
- random = self.random
- while True:
- u1 = random()
- u2 = 1.0 - random()
- z = NV_MAGICCONST * (u1 - 0.5) / u2
- zz = z * z / 4.0
- if zz <= -_log(u2):
- break
- continue
- return mu + z * sigma
-
-
- def lognormvariate(self, mu, sigma):
- """Log normal distribution.
-
- If you take the natural logarithm of this distribution, you'll get a
- normal distribution with mean mu and standard deviation sigma.
- mu can have any value, and sigma must be greater than zero.
-
- """
- return _exp(self.normalvariate(mu, sigma))
-
-
- def cunifvariate(self, mean, arc):
- '''Circular uniform distribution.
-
- mean is the mean angle, and arc is the range of the distribution,
- centered around the mean angle. Both values must be expressed in
- radians. Returned values range between mean - arc/2 and
- mean + arc/2 and are normalized to between 0 and pi.
-
- Deprecated in version 2.3. Use:
- (mean + arc * (Random.random() - 0.5)) % Math.pi
-
- '''
- import warnings
- warnings.warn('The cunifvariate function is deprecated; Use (mean + arc * (Random.random() - 0.5)) % Math.pi instead', DeprecationWarning)
- return (mean + arc * (self.random() - 0.5)) % _pi
-
-
- def expovariate(self, lambd):
- '''Exponential distribution.
-
- lambd is 1.0 divided by the desired mean. (The parameter would be
- called "lambda", but that is a reserved word in Python.) Returned
- values range from 0 to positive infinity.
-
- '''
- random = self.random
- u = random()
- while u <= 9.9999999999999995e-08:
- u = random()
- return -_log(u) / lambd
-
-
- def vonmisesvariate(self, mu, kappa):
- '''Circular data distribution.
-
- mu is the mean angle, expressed in radians between 0 and 2*pi, and
- kappa is the concentration parameter, which must be greater than or
- equal to zero. If kappa is equal to zero, this distribution reduces
- to a uniform random angle over the range 0 to 2*pi.
-
- '''
- random = self.random
- if kappa <= 9.9999999999999995e-07:
- return TWOPI * random()
-
- a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
- b = (a - _sqrt(2.0 * a)) / (2.0 * kappa)
- r = (1.0 + b * b) / (2.0 * b)
- while True:
- u1 = random()
- z = _cos(_pi * u1)
- f = (1.0 + r * z) / (r + z)
- c = kappa * (r - f)
- u2 = random()
- if u2 >= c * (2.0 - c):
- pass
- if not (u2 > c * _exp(1.0 - c)):
- break
- continue
- u3 = random()
- if u3 > 0.5:
- theta = mu % TWOPI + _acos(f)
- else:
- theta = mu % TWOPI - _acos(f)
- return theta
-
-
- def gammavariate(self, alpha, beta):
- '''Gamma distribution. Not the gamma function!
-
- Conditions on the parameters are alpha > 0 and beta > 0.
-
- '''
- if alpha <= 0.0 or beta <= 0.0:
- raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
-
- random = self.random
- if alpha > 1.0:
- ainv = _sqrt(2.0 * alpha - 1.0)
- bbb = alpha - LOG4
- ccc = alpha + ainv
- while True:
- u1 = random()
- if not None if u1 < u1 else u1 < 0.99999990000000005:
- continue
-
- u2 = 1.0 - random()
- v = _log(u1 / (1.0 - u1)) / ainv
- x = alpha * _exp(v)
- z = u1 * u1 * u2
- r = bbb + ccc * v - x
- if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
- return x * beta
- continue
- elif alpha == 1.0:
- u = random()
- while u <= 9.9999999999999995e-08:
- u = random()
- return -_log(u) * beta
- else:
- while True:
- u = random()
- b = (_e + alpha) / _e
- p = b * u
- if p <= 1.0:
- x = pow(p, 1.0 / alpha)
- else:
- x = -_log((b - p) / alpha)
- u1 = random()
- if p <= 1.0 and u1 > _exp(-x) and p > 1:
- pass
- if not (u1 > pow(x, alpha - 1.0)):
- break
- continue
- return x * beta
-
-
- def stdgamma(self, alpha, ainv, bbb, ccc):
- import warnings
- warnings.warn('The stdgamma function is deprecated; use gammavariate() instead', DeprecationWarning)
- return self.gammavariate(alpha, 1.0)
-
-
- def gauss(self, mu, sigma):
- '''Gaussian distribution.
-
- mu is the mean, and sigma is the standard deviation. This is
- slightly faster than the normalvariate() function.
-
- Not thread-safe without a lock around calls.
-
- '''
- random = self.random
- z = self.gauss_next
- self.gauss_next = None
- if z is None:
- x2pi = random() * TWOPI
- g2rad = _sqrt(-2.0 * _log(1.0 - random()))
- z = _cos(x2pi) * g2rad
- self.gauss_next = _sin(x2pi) * g2rad
-
- return mu + z * sigma
-
-
- def betavariate(self, alpha, beta):
- '''Beta distribution.
-
- Conditions on the parameters are alpha > -1 and beta} > -1.
- Returned values range between 0 and 1.
-
- '''
- y = self.gammavariate(alpha, 1.0)
- if y == 0:
- return 0.0
- else:
- return y / (y + self.gammavariate(beta, 1.0))
-
-
- def paretovariate(self, alpha):
- '''Pareto distribution. alpha is the shape parameter.'''
- u = 1.0 - self.random()
- return 1.0 / pow(u, 1.0 / alpha)
-
-
- def weibullvariate(self, alpha, beta):
- '''Weibull distribution.
-
- alpha is the scale parameter and beta is the shape parameter.
-
- '''
- u = 1.0 - self.random()
- return alpha * pow(-_log(u), 1.0 / beta)
-
-
-
- class WichmannHill(Random):
- VERSION = 1
-
- def seed(self, a = None):
- '''Initialize internal state from hashable object.
-
- None or no argument seeds from current time.
-
- If a is not None or an int or long, hash(a) is used instead.
-
- If a is an int or long, a is used directly. Distinct values between
- 0 and 27814431486575L inclusive are guaranteed to yield distinct
- internal states (this guarantee is specific to the default
- Wichmann-Hill generator).
- '''
- if a is None:
- import time
- a = long(time.time() * 256)
-
- if not isinstance(a, (int, long)):
- a = hash(a)
-
- (a, x) = divmod(a, 30268)
- (a, y) = divmod(a, 30306)
- (a, z) = divmod(a, 30322)
- self._seed = (int(x) + 1, int(y) + 1, int(z) + 1)
- self.gauss_next = None
-
-
- def random(self):
- '''Get the next random number in the range [0.0, 1.0).'''
- (x, y, z) = self._seed
- x = 171 * x % 30269
- y = 172 * y % 30307
- z = 170 * z % 30323
- self._seed = (x, y, z)
- return (x / 30269.0 + y / 30307.0 + z / 30323.0) % 1.0
-
-
- def getstate(self):
- '''Return internal state; can be passed to setstate() later.'''
- return (self.VERSION, self._seed, self.gauss_next)
-
-
- def setstate(self, state):
- '''Restore internal state from object returned by getstate().'''
- version = state[0]
- if version == 1:
- (version, self._seed, self.gauss_next) = state
- else:
- raise ValueError('state with version %s passed to Random.setstate() of version %s' % (version, self.VERSION))
-
-
- def jumpahead(self, n):
- '''Act as if n calls to random() were made, but quickly.
-
- n is an int, greater than or equal to 0.
-
- Example use: If you have 2 threads and know that each will
- consume no more than a million random numbers, create two Random
- objects r1 and r2, then do
- r2.setstate(r1.getstate())
- r2.jumpahead(1000000)
- Then r1 and r2 will use guaranteed-disjoint segments of the full
- period.
- '''
- if not (n >= 0):
- raise ValueError('n must be >= 0')
-
- (x, y, z) = self._seed
- x = int(x * pow(171, n, 30269)) % 30269
- y = int(y * pow(172, n, 30307)) % 30307
- z = int(z * pow(170, n, 30323)) % 30323
- self._seed = (x, y, z)
-
-
- def __whseed(self, x = 0, y = 0, z = 0):
- '''Set the Wichmann-Hill seed from (x, y, z).
-
- These must be integers in the range [0, 256).
- '''
- if not None if type(y) == type(y) and type(z) == type(z) else type(z) == int:
- raise TypeError('seeds must be integers')
-
- if x <= x:
- pass
- elif x < 256:
- if y <= y:
- pass
- elif y < 256:
- pass
- if not None if z <= z else z < 256:
- raise ValueError('seeds must be in range(0, 256)')
-
- if x == x and y == y:
- pass
- elif y == z:
- import time
- t = long(time.time() * 256)
- t = int(t & 16777215 ^ t >> 24)
- (t, x) = divmod(t, 256)
- (t, y) = divmod(t, 256)
- (t, z) = divmod(t, 256)
-
- if not x:
- pass
- if not y:
- pass
- if not z:
- pass
- self._seed = (1, 1, 1)
- self.gauss_next = None
-
-
- def whseed(self, a = None):
- """Seed from hashable object's hash code.
-
- None or no argument seeds from current time. It is not guaranteed
- that objects with distinct hash codes lead to distinct internal
- states.
-
- This is obsolete, provided for compatibility with the seed routine
- used prior to Python 2.1. Use the .seed() method instead.
- """
- if a is None:
- self._WichmannHill__whseed()
- return None
-
- a = hash(a)
- (a, x) = divmod(a, 256)
- (a, y) = divmod(a, 256)
- (a, z) = divmod(a, 256)
- if not (x + a) % 256:
- pass
- x = 1
- if not (y + a) % 256:
- pass
- y = 1
- if not (z + a) % 256:
- pass
- z = 1
- self._WichmannHill__whseed(x, y, z)
-
-
-
- def _test_generator(n, funccall):
- import time
- print n, 'times', funccall
- code = compile(funccall, funccall, 'eval')
- total = 0.0
- sqsum = 0.0
- smallest = 10000000000.0
- largest = -10000000000.0
- t0 = time.time()
- for i in range(n):
- x = eval(code)
- total += x
- sqsum = sqsum + x * x
- smallest = min(x, smallest)
- largest = max(x, largest)
-
- t1 = time.time()
- print round(t1 - t0, 3), 'sec,',
- avg = total / n
- stddev = _sqrt(sqsum / n - avg * avg)
- print 'avg %g, stddev %g, min %g, max %g' % (avg, stddev, smallest, largest)
-
-
- def _test(N = 2000):
- _test_generator(N, 'random()')
- _test_generator(N, 'normalvariate(0.0, 1.0)')
- _test_generator(N, 'lognormvariate(0.0, 1.0)')
- _test_generator(N, 'cunifvariate(0.0, 1.0)')
- _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
- _test_generator(N, 'gammavariate(0.01, 1.0)')
- _test_generator(N, 'gammavariate(0.1, 1.0)')
- _test_generator(N, 'gammavariate(0.1, 2.0)')
- _test_generator(N, 'gammavariate(0.5, 1.0)')
- _test_generator(N, 'gammavariate(0.9, 1.0)')
- _test_generator(N, 'gammavariate(1.0, 1.0)')
- _test_generator(N, 'gammavariate(2.0, 1.0)')
- _test_generator(N, 'gammavariate(20.0, 1.0)')
- _test_generator(N, 'gammavariate(200.0, 1.0)')
- _test_generator(N, 'gauss(0.0, 1.0)')
- _test_generator(N, 'betavariate(3.0, 3.0)')
-
- _inst = Random()
- seed = _inst.seed
- random = _inst.random
- uniform = _inst.uniform
- randint = _inst.randint
- choice = _inst.choice
- randrange = _inst.randrange
- sample = _inst.sample
- shuffle = _inst.shuffle
- normalvariate = _inst.normalvariate
- lognormvariate = _inst.lognormvariate
- cunifvariate = _inst.cunifvariate
- expovariate = _inst.expovariate
- vonmisesvariate = _inst.vonmisesvariate
- gammavariate = _inst.gammavariate
- stdgamma = _inst.stdgamma
- gauss = _inst.gauss
- betavariate = _inst.betavariate
- paretovariate = _inst.paretovariate
- weibullvariate = _inst.weibullvariate
- getstate = _inst.getstate
- setstate = _inst.setstate
- jumpahead = _inst.jumpahead
- if __name__ == '__main__':
- _test()
-
-